Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

نویسندگان

  • Jean-Daniel Boissonnat
  • Mael Rouxel-Labbé
  • Mathijs Wintraecken
چکیده

The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This structure has been implemented and was shown to lead to good triangulations in R2 and on surfaces embedded in R3 as detailed in our experimental companion paper. In this paper, we study theoretical aspects of our structure. Given a finite set of points P in a domain Ω equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi diagram of P to its Riemannian Voronoi diagram. Both diagrams have dual structures called the discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions that guarantee that these dual structures are identical. It then follows from previous results that the discrete Riemannian Delaunay complex can be embedded in Ω under sufficient conditions, leading to an anisotropic triangulation with curved simplices. Furthermore, we show that, under similar conditions, the simplices of this triangulation can be straightened. Key-words: Riemannien geometry, Voronoi diagram, Delaunay triangulation Long version of the paper accepted at the 33rd International Symposium on Computational Geometry (2017) Triangulations anisotropiques via diagrammes de Voronoi riemanniens discrets Résumé : L’utilisation de triangulations anisotropes est souhaitable dans de nombreux domaines, tels que la résolution d’équations aux dérivées partielles ou la visualisation de surfaces. Pour résoudre ce problème notoirement difficile, nous proposons l’utilisation de diagrammes de Voronoi riemanniens discrets, une structure discrete qui approxime le diagramme de Voronoi riemannien. Cette structure a été implémentée et nous avons montré dans une publication empirique associée qu’elle produisait de bonnes triangulations pour des domaines de R2 et des surfaces plongées dans R3. Dans ce papier, nous étudions les aspects théoriques de notre structure. Etant donné un ensemble fini de points P dans un domaine Ω équippé d’une métrique riemannienne, nous comparons le diagramme de Voronoi riemannien discret de P Ã sa version exacte. Ces deux diagrammes ont chacun une structure dualle, respectivement appelées le complexe de Delaunay riemannien discret et le complex de Delaunay riemannien. Nous donnons des conditions qui garantissent que ces deux complexes sont identiques. Il en résulte de résultats précedemment établis que le complexe de Delaunay riemannien discret peut Ãatre plongé dans Ω sous certaines conditions et une triangulation anisotrope faite de simplexes courbes est obtenue. En outre, nous montrons que, sous des conditions analogues, les simplexes de cette triangulation peuvent Ãatre rendus droit. Mots-clés : Géométrie riemannienne, Diagramme de Voronoi, Triangulation de Delaunay Anisotropic triangulations via discrete Riemannian Voronoi diagrams 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Weighted Anisotropic Voronoi Diagrams and Delaunay Traingulations

We introduce a weighting scheme for Voronoi diagrams that has preferred directions. This generalizes the concept of weighted Delaunay triangulations and overcomes some of the difficulties of using multiplicative anisotropic weight systems. We discuss properties that make these weighting schemes attractive.

متن کامل

Practical Conditions for Well-behaved-ness of Anisotropic Voronoi Diagrams

Recently, simple conditions for well-behaved-ness of anisotropic Voronoi diagrams have been proposed. While these conditions ensure well-behaved-ness of two types of practical anisotropic Voronoi diagrams, as well as the geodesic-distance one, in any dimension, they are both prohibitively expensive to evaluate, and not well-suited for typical problems in approximation or optimization. We propos...

متن کامل

Preprint submitted to International Journal of Image and Gaphics STRUCTURE DETECTION FROM A 3D SET OF POINTS WITH ANISOTROPIC ALPHA-SHAPES

We present a method to extract polyhedral structures from a three-dimensional set of points, even if these structures are embedded in a perturbed background. The method is based on a family of affine diagrams which is an extension of the Voronoi diagram. These diagrams, namely anisotropic diagrams, are defined by using a parameterized distance whose unit ball is an ellipsoidal one. The paramete...

متن کامل

Structure Detection from a 3D Set of Points with Anisotropic alpha-Shapes

We present a method to extract polyhedral structures from a three-dimensional set of points, even if these structures are embedded in a perturbed background. The method is based on a family of affine diagrams which is an extension of the Voronoi diagram. These diagrams, namely anisotropic diagrams, are defined by using a parameterized distance whose unit ball is an ellipsoidal one. The paramete...

متن کامل

Multiple Covers with Balls II: Weighted Averages

Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017